无忧总结网 >地图 >实用资料 >

六年级圆的课件

六年级圆的课件

时间:2025-06-18 无忧总结网

六年级圆的课件(集锦12篇)。

作为一无名无私奉献的教育工作者,总归要编写教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?下面是小编收集整理的人教版六年级上册《圆的认识》数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

六年级圆的课件 篇1

教学内容:

教材第59页及相关题目。

教学目标:

1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

3、培养学生观察周围事物的兴趣,提高观察能力。

教学重点:

认识圆的对称轴。

教学难点:

用圆设计图案的方法。

教学准备:

多媒体课件、圆规、直尺等。

教学过程:

学生活动(二次备课)

一、复习导入

1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。

3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

二、预习反馈点名让学生汇报预习情况。

(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

三、探索新知

1、设计美丽图案——花瓣。

(1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

(2)想一想,自己尝试画一画。可参考课本第59页的步骤。

(3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

2、设计美丽的图案——风车图。

(1)观察图案,想一想如果画这个图案,应按怎样的.步骤。

(2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

①先画一个圆,在圆内画两条互相垂直的直径。

②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

③把所画半圆涂上颜色。

3、设计美丽的图案——太极图。

指名说一说画太极图的步骤:

(1)画一个圆,在圆内画一条直径。

(2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

(3)把圆的一半涂上颜色,如图所示。

四、巩固练习

1、完成教材练习十三第6题。

2、完成教材练习十三第8题。

3、完成教材练习十三第9题。

五、拓展提升

观察图案,说一说下面两个图案的画法。

六、课堂总结

让学生说一说这节课的收获。

七、作业布置

教材练习十三第7题和第10题的第1、4个图案。

画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

教学反思

成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

六年级圆的课件 篇2

教材简析:

圆是小学数学空间与图形领域里最后教学的一个平面图形,也是教学的惟一一个曲线图形。学生对平面上常见的直线图形的认识经验将有助于学生对曲线图形的认识,这也是学生对平面图形认知结构的一次重要拓展。通过圆的教学,本单元在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的策略和推理能力。全单元的教学内容分成四部分编排,本节课教学第9397页圆的形状特点以及圆心、半径和直径的认识。教学中采用由表及里、逐步深入,来体验圆的特征。例1通过说圆、画圆、感

受圆与以前学过的平面图形的不同之处。教材里没有直接指出圆是曲线图形,把机会留给学生体验和交流。这样,学生在直观认识圆的基础上深入了一步。例2通过用圆规画、用尺量来教学圆心、半径、直径,使学生能更准确地把握圆心、半径、直径的概念。例3安排学生通过画、量、折等活动,深入体验圆的特征。练习十七在安排练习基础知识的同时,让学生进一步体会圆,开展数学思考,发展空间观念。

特别说明:由于本届五年级学生还没有使用苏教版国标本教材,因此,在实际教学中有关轴对称及平移,旋转的内容无法涉及。

教学目标:

1.知识与技能目标:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养学生的'合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。

3.情感与价值观目标:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

教学重点:认识圆及其特征,让学生初步学会用圆规画圆。

教学难点:画圆,用圆的知识来解释和解决有关实际问题。

课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件

教学过程

一、创设情境,初步感知圆

1.课前交流:略

2.导入新课:

(1)(指着物体上的圆)这种形状叫

(2)生活中你在哪儿见过圆?

二、自主合作,初步认识圆

1.画圆。

(1)学生借助物体画圆。

(2)用圆规试着画一个圆,然后组织学生交流用圆规画圆的方法:定长、定点、旋转一周。

(3)用圆规规范地画圆、剪圆,让学生再次感受圆是由曲线围成的。

(4)比较得出:圆是由曲线围成的平面图形。

2.认识圆的特征

(1)认识圆心、半径、直径

①观察剪下来的纸圆,组织学生在交流中认识圆心,并知道常用字母0表示。

②通过让学生折圆,使学生进一步感受圆心的特征。

③通过让学生画一画、比一比纸圆上的折痕,交流有什么发现,从而认识圆的半径和直径的概念。

(2)认识圆的特征

①组织学生通过小组合作学习,自主探索圆的有关特征。

②完成填表题和判断画圆,让学生知道圆的大小和半径或直径有关。

③教师小结有关内容。

三、联系实际,初步应用圆。

1.广场花坛喷水装置的设计,如果你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?巩固圆心的作用。

2.车轮为什么要设计成圆的?车轴为什么要装在圆心?

3.这是一个球场,要在中间画这样一个圆要用哪些工具?怎么画?

六年级圆的课件 篇3

教材简析:

圆是小学数学“空间与图形”领域里最后教学的一个平面图形,也是教学的惟一一个曲线图形。同学对平面上常见的直线图形的认识经验将有助于同学对曲线图形的认识,这也是同学对平面图形认知结构的一次重要拓展。

教学目标:

1.知识与技能目标:使同学认识圆,知道圆各局部的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养同学的合作意识和创新意识,以和笼统、概括等能力,进一步发展同学的空间观念。

3.情感与价值观目标:通过学习,提高同学对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

教学重点:认识圆和其特征,让同学初步学会用圆规画圆。

教学难点:画圆,用圆的知识来解释和解决有关实际问题。

课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件

教学过程

一、创设情境,初步感知圆

1.课前交流:略

2.导入新课:

(1)(指着物体上的圆)这种形状叫……

(2)生活中你在哪儿见过圆?

二、自主合作,初步认识圆

1.画圆。

(1)同学借助物体画圆。

(2)用圆规试着画一个圆,然后组织同学交流用圆规画圆的方法:定长、定点、旋转一周。

(3)用圆规规范地画圆、剪圆,让同学再次感受圆是由曲线围成的`。

(4)比较得出:圆是由曲线围成的平面图形。

2.认识圆的特征

(1)认识圆心、半径、直径

①观察剪下来的纸圆,组织同学在交流中认识圆心,并知道常用字母0表示。

②通过让同学折圆,使同学进一步感受圆心的特征。

③通过让同学画一画、比一比纸圆上的折痕,交流有什么发现,从而认识圆的半径和直径的概念。

(2)认识圆的特征

①组织同学通过小组合作学习,自主探索圆的有关特征。

②完成填表题和判断画圆,让同学知道圆的大小和半径或直径有关。

③教师小结有关内容。

三、联系实际,初步应用圆。

1.广场花坛喷水装置的设计,假如你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?巩固圆心的作用。

2.车轮为什么要设计成圆的?车轴为什么要装在圆心?

3.这是一个球场,要在中间画这样一个圆要用哪些工具?怎么画?

六年级圆的课件 篇4

【教学内容】

义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。

【教学目标】

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

【教学重、难点】

1、圆的特征。

2、同一个圆里半径与直径的关系。

【教具、学具准备】

1、三角尺、直尺、圆规。

2、教学课件。

【教学设计】

教 学过程

教学过程说明

一、实践操作。

1、折一折。

每人准备一个圆,请同学们想办法找出圆心。

2、小组活动:剪几个圆,折一折,你发现了什么?

小组交流。

3、汇报:沿着任意一条直径对折,都能完全重合。

4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

在同一个圆里,直径的长度是半径的2倍,可以表示为d=2rr=d/2。

二、尝试练习。

1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?

正方形:4条

长方形:2条

等腰三角形:1条

等边三角形:3条

圆:无数条

2、要求学生剪出书本第7页做一做的'三幅图,沿中心点A转动,同学们发现了什么?

三、巩固练习。

1、练一练第一题。

学生在书上填写,集体交流。

2、练一练第二题。

学生在书上填写,集体交流。

3、练一练第三题。

学生画出对称轴,集体交流。

4、练一练第四题。

学生实际测量,集体交流。

5、练一练第五题。

学生在书上填写,集体交流。

使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

引导学生整理已学过的轴对称图形。

让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

通过练习,进一步巩固所学知识。

四、全课小结。

【教学反思】

学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!

六年级圆的课件 篇5

教学内容:

上教版四年级第一学期P74~75

教学目标:

1、经历主动探索、操作画圆等活动,理解圆的本质特征。

2、初步学会用圆规画圆。认识圆心、半径并知道其作用。

3、培养学生的观察、操作、抽象、概括等能力,进一步发展空间观念。

教学重、难点:

理解圆的本质特征。

教具准备:

圆规、课件、三角尺

学具准备:

圆规、直尺、A4纸、正方形纸

教学过程:

一、创设情境,丰富表象,初步感知圆的形成过程。

1、寻宝游戏:

师:小胖得到一张纸条,宝物藏在距离小胖3米远的地方。请你在这张纸上点上一个点,这个点就是小胖,这个宝物在哪儿呢?在纸上表示出你的想法,纸上1cm表示1m,请你表示出距离小胖3m远的宝物可能所在的位置。

揭题:带着这个问题走进我们今天的学习,齐读课题。(板书:圆的认识)

2、对比认识:

师:图形不同他们的特点也不一样,所以确定他们大小所需要的数据也不一样,我们今天学习什么?圆的大小究竟是谁确定的呢?

二、尝试画圆,揭示圆的本质特征。

1、认识圆心,半径

师:请你在空白纸上,画出3个圆,可以同样大,也可以画3个大小不一,边画边体会,圆的大小有谁确定?

师:要画出大小一样的圆,有什么窍门,怎么样保证画出的圆的大小完全相同?

(能不能说得更具体一点)

师:只要保证圆规两脚的距离不变,画出的圆大小就一样的,同意吗?

师:要想画出大小不同的圆,有什么窍门?

师:圆规开口的两个脚或者两个针尖的距离不一样。

师:这样看来,圆的大小是谁确定的呢?

师:圆规开口的大小决定圆的大小。

师:我们就以这个圆为例,针尖在这里,圆规两脚的距离,指的是从哪儿到哪儿的距离?(书空)

师:你能用一条线段把他表示出来吗?(呈现作品

师:像这样,一端在圆的中心,一端在圆上的线段,数学中把他叫做什么?

师:中间这个点叫圆心,用字母0表示,连接圆心0与圆上某一点的线段叫做(半径),用字母r。

师:找到圆心O,标上半径r。

总结:现在看来,圆的大小是由半径决定的,半径越长,圆越大,半径越短,圆越小。

2、探究圆的有无数条,半径都相等

师:小组讨论,看看那个小组认识最深刻,方法最多元。

师:先解决第一问题,半径真有无数条吗?

师:圆的半径有无数条都相等,都相等吗?拿出理由啦,没有理由的都只能成为猜想。

师总结:得出结论了圆的半径有无数条,同一个圆里面半径都相等。

3、深化对比

真因为这样,200多年前,我们伟大的思想家墨子,说了“圆,一中同长也”

一中指,同长呢?正因为一中同长,虽然有无数条半径,但只要几条就能知道圆的大小?

师:难道以前的这些图形不是一中同长吗?

4、认识直径

师:在圆里面,除了半径能决定圆的大小,还有一条线段也能决定圆的大小,找一个圆画出心目中的直径。

展示作品:直径

师:是不是圆里面的随便画一条就是直径?怎样的线段是直径?用自己的话概括一下?

师:穿过圆心,两个端点在圆上。

半径有无数条,长度相等,猜猜直径有什么特点?

师:直径有无数条我们就不在研究了,和我们刚才的半径无数条的想法差不多,那为什么直径的长度都相等呢?除了测量你有什么更好的办法来说明?

师:同一个圆里面,直径是半径的2倍。

想圆猜物。

师:那我就来点线索,当我线索出来的时候,第一独立思考,第二,同桌前后迅速碰撞,猜一猜我带的'是什么?

半径:15cm

师:仔细观察这个钟面,你在这个钟面上,你找到圆了吗?他指完了,还有别的圆的,你可以继续补充?

师:哪根针转出的圆大?

说明圆的大小和什么有关?

圆的大小和半径有关,既然圆的大小和半径有关。谁决定了圆的位置?

师:他在没有圆的地方,他发现了3个动态的圆,这就是数学的洞察力。

直径:135cm

师:数据太大了,我再给点提示。

师:全球最大的摩天轮,知道在哪儿吗?伦敦眼,杨老师为了上好这节课,专门跑了一趟伦敦,拍了张照片我就回来了。话说那天去啊,杨老师和杨老师的朋友一起去的,他知道杨老师是数学老师,就给杨老师出了一道题,他说我们俩这次做摩天轮分开来坐,而且坐得越远越好,他蹭蹭蹭的爬上去了,你猜我在哪儿?

师:谁能用数学的语言描述一下,我究竟坐在那儿?

原来我在直径的那里,他在直径的那里。

师:当我们把这些线段连起来,圆里面发现了许多的线段,仔细发现,哪条线段最长?(直径最长:原来小小的游戏里面,蕴含着朴素的道理,直径是一个圆里面最长的线段)

总结回顾

师:最后,千金难买回头看,距离小胖3米的宝物为什么是圆呢?又真的是圆吗?

师:你能说说球和圆有什么区别?

学习到这儿,我们的数学课将要结束了,杨老师希望在座所有的同学都能拥有一双数学的眼睛,你会在生活中发现更多的圆,了解更多圆的奥秘。

书到用时方恨少,事非经过不知难。

六年级圆的课件 篇6

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学过程:

一、复习。

1、口答。

4 5 8

2、求出下面各圆的周长。

C=d c=2r

3.142 23.144

=6.28(厘米) =83.14

=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=d C=2r

(3)根据上两个公式,你能知道

直径=周长圆周率 半径=周长(圆周率2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m 求:d=?

解:设直径是x米。

3.773.14 3.14x=3.77

1.2(米) x=3.773.14

x1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c(2) 求:r=?

解:设半径为x米。

3.142x=1.2 1.223.14

6.28x=1.2 = 0.191

x=0.191 0.19(米)

x0.19

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的`尖端转动一周所走的.路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

(1)3.148

(2)3.1482

(3) 3.1482+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)

45分钟走了多少厘米? 125.6 =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

四、 作业。

P65-66 第3、6、7、9题

教学追记:

圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

六年级圆的课件 篇7

教学目标:

1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的`周长,再算出花坛的.直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。

2.习“试一试”。DLBdf.Org

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

六年级圆的课件 篇8

教学目标

结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

重点

圆的特征的进一步体会

难点

用圆的知识来解释生活中的简单现象。(找到解决问题的突破点:研究各图形中心点的运动轨迹)

教具

纸片(圆形,方形,椭圆形)

电化教具

动画课件

教学过程:

一、 知识回顾

1、用你自己的话说说什么样的图形是圆?

2、按下列要求画圆:(在平面上固定一个点A)

(1)以点A为圆心画一个圆;

(2)画一个圆,使所画的圆经过这个点A;

(3)画一个圆,使A点为圆心,半径为2厘米。

3、举出生活中看到圆的例子。(从车轮是圆形的引入新课)

二、新课探究

1、问题:车轮为什么做成圆形的?

2、小组讨论探究策略(引导学生想做成圆形有什么好处,如果做成正方形,三角形,椭圆形又会是什么情况?找到解决问题的关键点是研究几种图形中心点的运动轨迹的不同)

3、学生动手探究(用准备好的纸片试一试),把各种图形的中心点的运动轨迹想办法描出来。

4、小组内讨论交流,准备好发言,在全班交流

由于圆上的各点到中心点(圆心)的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样坐在车上的人或放在车内的物就很平稳;而正方形、椭圆形等由于上面的点到中心点的距离不一样,这样在运动中,中心点运动的线路就不是一条直线,如果人坐在这样的车上会感觉到颠簸。

三、观看动画,进一步体会车轮为什么做成圆形的。

本质:圆上的`各点到中心点的距离都相等,而其它图形不具有这个特点。

四、拓展应用

要重视让学生动手写的练习。可先让一些学生说,其他人补充。

五、课后延伸

用心发现生活中的圆,尝试用学过的知识解释。

进一步体会圆的特征

要使学生明白回答这样一个问题应从哪方面入手,最基本的一个方法就是探究车轮做成圆会是什么情况,做成其它形状又是什么情况,这两种情况进行比较就能得出结论了。

观看动画,进一步加深印象。

学以致用,体验成功。

板书设计

圆的认识(一)

车轮为什么做成圆形的?

圆 形:各点到中心点距离相等-------中心点运动成一条直线---------平稳

正方形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳

椭圆形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳

教学后记

结合具体的情境,体验数学与日常生活密切相关,能用圆的知识

来解释生活中的简单现象。学生掌握得较好,能体会和解释这些与圆有关的现象。

六年级圆的课件 篇9

教学内容

教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

教学目标

1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

教学重、难点

掌握并理解圆的周长计算公式及其推导过程。

教具、学具准备

圆规、直尺、课件、圆纸片、线。

教学过程

一、导入新课

出示情境图:谁的铁环滚一圈的距离长一些?为什么?

教师:铁环滚动一周的距离我们就叫做铁环的周长。

教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

板书课题:圆的周长。

二、感知圆的周长与直径的关系

1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

学生指出并回答。(略)

2.观察。

课件演示右图:

问题:这两个圆周长有什么关系?你是怎么知道的?

小结:直径相等,圆的周长就相等。

3.课件演示右图:

问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

4.小结。

问题:通过刚才的观察,你有什么发现?

学生:圆的周长和直径有关系。

三、探究圆的周长与直径的倍数关系

圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

1.小组讨论,制定探究步骤。

出示探究建议:

(1)测量圆的周长和直径;

(2)记录数据;

(3)进行计算;

(4)得出结论。

2.说明活动要求。

每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

圆的直径圆的周长周长除以直径的商(保留两位小数)

3.小组合作,进行探究。

4.汇报交流。

(1)交流测量的方法。

提问:谁来介绍一下,你们组是怎样测量圆的周长的?

学生汇报测量的方法。(绳绕法、滚动法……)

教师:在这些方法中,最欣赏哪个组的方法?

小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

(2)交流计算方法和结论。

提问:观察这些计算结果,你有什么发现?你还有哪些了解?

学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

5.介绍圆周率。

圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到2061亿位。

6.总结圆周长的.计算方法。

问题:你怎样理解周长/直径=π?你还能知道什么?

结论:c=πd,d=c/π,c=2πr,r=c/2π。

说明:为了计算方便,我们把π近似的取为3.14。

7.教学例2。

让学生独立列式计算,提示用估算检查计算结果。

[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

四、巩固练习

(一)判断。

1.π=3.14。()

2.计算圆的周长必须知道圆的直径。()

3.只要知道圆的半径或直径,就可以求圆的周长。()

(二)选择。

1.较大的圆的圆周率()较小的圆的圆周率。

a.大于b.小于c.等于

2.半圆的周长()圆周长。

a.大于b.小于c.等于

(三)实践操作。

请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

五、课堂小结

通过这堂课的学习,你有什么收获?你还有什么问题?

六、课堂作业

1.课堂活动第1、2题。

将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

2.练习五第1~5题。

在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

七、课后作业

1.求下面各圆的周长。

(1)d=2米(2)d=1.5厘米(3)d=4分米

2.求下面各圆的周长。

(1)r=6分米(2)r=1.5厘米(3)r=3米

[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

六年级圆的课件 篇10

教学目标

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程设计

(一)复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习圆的认识。通过这节课的`学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

(二)学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

定点,用数学语言说叫圆心。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书) 无数条 相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

甲圆的半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画,错误画。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。 ( )

(3)在同一圆里,半径是4厘米,直径一定是2厘米。 ( )

(4)圆心在圆上。 ( )

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书) 位置 大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

(三)课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

六年级圆的课件 篇11

教学目标

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系

2、进一步理解轴对称图形的特征,体会圆的对称性。

3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

教材分析

重点

理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

难点

在折纸的过程中体会圆的特征

教具

教学圆规

电化教具

课件

一、 创设情境:

亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?

二、探索活动:

1、引导学生开展折纸活动,找到圆心。

(1)自己动手找到圆心。

(2)汇报交流找圆心的过程,并说出这样做的想法。

2、通过折纸你发现了什么?理解圆的对称性。

(1)欣赏美丽的轴对称图形。

(2)再折纸,体会圆的轴对称性,画出圆的对称轴。

(3)圆有无数条对称轴。对称轴是直径所在的直线。

3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

(1)边折纸边观察思考同一个圆里的半径有什么特点?

(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?

(3)引导学生用字母表示一个圆的直径与半径的关系。

三、课堂练习。

1、让学生独立完成试一试做完后交流汇报。

2、完成练一练进一步巩固圆的半径与直径的.关系。

3、完成填一填

让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

汇报交流,说答题根据。

4、完成书后第3题。

四、课堂小结。

引导学生小结本节内容。

学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。

个别学生做试一试的题目会有困难,注意个别指导。

板书设计

圆的认识(二)

我们的发现

同一个圆里所有的半径都相等

同一个圆里d=2r或r=1/2d

圆有无数条对称轴,对称轴是直径所在的直线

学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

六年级圆的课件 篇12

教学内容:

教材第57-59页圆的认识。

教学目标:

1.通过学生的画圆、剪圆、折圆等活动,使学生认识圆,发解圆的各部分名称,掌握圆的特征以及半径、直径的关系,理解圆心、半径、直径的作用。

2.在画圆、剪圆、折圆等活动中,培养学生的观察、分析、辨析、概括能力。

3.在活动中渗透普遍联系的辩证唯物主义观点。

教学重点:

掌握圆各部分的名称及圆的特征和圆的画法。

教学难点:

掌握圆各部分的名称及圆的特征和圆的画法。

教学准备:

圆纸片直尺圆规

教学过程:

一、创设情境,激趣导入

1、复习:我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形正方形平行四边形三角形梯形

2、情景导入:上面系着一段绳子的小球,老师用手拽着绳子的一端,将小球甩起来。

提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

3、学生拿出圆的学具:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)圆是平面上的'一种曲线图形。

举例:生活中有哪些圆形的物体?

这节课我们就来认识圆。(板书课题:圆的认识出示目标)这节课我们就来认识圆。(板书课题:圆的认识出示目标)

二、自主探究

1、学生自己在准备好的纸上画一个圆,并动手剪下。

2、动手折一折。

(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)

(2)再折出另外两条折痕,看看圆心是否相同。

3、认识直径和半径。

(1)将折痕用铅笔画出来,比一比是否相等?

(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

三、合作探究

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

四、精讲点拨

(一)认识直径和半径及关系

(1)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

(2)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

(3)直径与半径的关系。

归纳结论:在同一个圆里,d=2r r= 2 d

练一练:P58做一做的第1、2题。

(二)学习画圆。

1、介绍圆规的各部分名称及使用方法。

2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法:

(1)定半径;

(2)定圆心;

(3)旋转一周.

强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

3、为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

归纳:半径决定圆的大小,圆心决定圆的位置。

五、课堂小结本节课你的收获有哪些?

六、达标检测

(一)判断

1.画圆时,圆规两脚间的距离是半径的长度。()

2.两端都在圆上的线段,叫做直径。()

3.圆心到圆上任意一点的距离都相等。()

4.半径2厘米的圆比直径3厘米的圆大。()

5.所有圆的半径都相等。()

6.在同一个圆里,半径是直径的。()

7.在同一个圆里,所有直径的长度都相等。()

8.两条半径可以组成一条直径。()

9.直径是半径的2倍。()

10.圆的半径都相等。()

(二)按下面的要求,用圆规画圆。

1.半径2厘米。

2.半径2.5厘米。

3.直径8厘米。

七、课后作业

教材60页1、2题。

(2)两端都在圆上的线段是直径。()

(3)圆心到圆上任意一点的距离都相等。()

(4)直径是3厘米的圆比半径是2厘米的圆大。()

3、完成练习十三第1、2题。

本文来源:http://www.dlbdf.org/shiyongziliao/80938.html